Section 3.8 Implicit Differentiation

- (1) Implicit Functions
- (2) Implicit Differentiation
- (3) Derivatives of Logarithmic Functions

Implicit Functions and Implicit Differentiation

In every equation that involves y and x, we can regard y as a function of x, except for where the derivative does not exist. Even if we cannot solve for y explicitly, it is still an implicit function of x.

Differentiating a function which is defined implicitly is called implicit differentiation, and is an application of the chain rule.

Idea: Differentiate both sides of the equation, then solve for y'(x).

KI JKANSAS

Implicit Differentiation

Example I(a): The circle of radius 5 is defined by the equation $x^2 + v^2 = 25.$

To find y'(x), first differentiate both sides of the equation.

$$\frac{d}{dx}\left(x^2+y(x)^2\right)=\frac{d}{dx}\left(25\right)$$

Note that $\frac{d}{dx}(y(x)^2) = 2y(x)y'(x)$, so this equation becomes 2x + 2y(x)y'(x) = 0.

Now abbreviate y = y(x) and y' = y'(x) and solve for y'(x):

$$2x + 2yy' = 0$$
 \therefore $2yy' = -2x$ \therefore $y' = -\frac{x}{y}$

Implicit Differentiation

The equation $x^2 + y^2 = 25$ implicitly defines a function whose derivative with respect to x is

$$\frac{dy}{dx} = \frac{-x}{y}$$

Notice that the derivative depends upon more than just an x-value! Both an x and y value must be specified.

Example II, Implicit Differentiation

By viewing y as an implicit function of x, we are viewing y as some function whose formula, f(x), is unknown, but which we can differentiate.

Implicit differentiation is an application of the chain rule:

$$\frac{d}{dx}(y) = \frac{dy}{dx} \qquad \qquad \frac{d}{dx}(y^3) = 3y^2 \frac{dy}{dx} \qquad \qquad \frac{d}{dx}(e^y) = e^y \frac{dy}{dx}$$

The product and quotient rules still apply:

$$\frac{d}{dx}(xy) = x\frac{dy}{dx} + y \qquad \qquad \frac{d}{dx}(x^2y^2) = (x^2)(2yy') + (2x)(y^2)$$
$$\frac{d}{dx}\left(\frac{x}{y}\right) = \frac{y - xy'}{y^2} \qquad \qquad \frac{d}{dx}\left(\frac{x+1}{y+1}\right) = \frac{(y+1)(1) - (x+1)(y')}{(y+1)^2}$$

Example III

Example III(a): Find y' if $x^3 + 6xy - y^2 = 0$.

Example III(b): Find the tangent line to the curve $x^3 + y^2 - 2xy = 4$ at (-2, 2).

Example III

Example III(c): For the equation $x^3 + y^2 = xy$ find the points for which the tangent line is horizontal or vertical.

Example IV, Comparing dy/dx and dx/dy

Differentiate the following equations with respect to each of x and y. Watch what happens!

(1)
$$9x^2 + xy + 9y^2 = 19$$

(11) $\sqrt{y + y} = y^2y^2$

(II)
$$\sqrt{x + y} = x^2 y^2$$

(III) $e^{xy} = e^{4x} - e^{5y}$

Derivatives of Logarithmic Functions

Remember that the logarithm function is defined by

$$y = \log_b(x) \qquad \Leftrightarrow \qquad x = b^y.$$

We can calculate the derivative of $y = \log_b(x)$ by implicitly differentiating the equation $x = b^y$ with respect to x:

$$\frac{d}{dx}(x) = \frac{d}{dx}(b^{y}) \quad \Rightarrow \quad 1 = b^{y}\ln(b)\frac{dy}{dx} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{1}{b^{y}\ln(b)} = \frac{1}{x\ln(b)}$$

If $b = e$, then $\log_{b}(x) = \ln(x)$ and $\ln(b) = 1$.

Derivatives of Logarithmic Functions

$$\frac{d}{dx}(\log_b(x)) = \frac{1}{x \ln(b)} \qquad \qquad \frac{d}{dx}(\ln(x)) = \frac{1}{x}$$

Example V

Derivatives of Logarithmic Functions

$$\frac{d}{dx} (\log_b(x)) = \frac{1}{x \ln(b)} \qquad \frac{d}{dx} (\ln(x)) = \frac{1}{x}$$
(1) $y = \ln (\sqrt{x^2 + 1})$
(11) $y = \ln (\ln (2x))$
(11) $y = \log_{10} (2 + \sqrt{x})$
(1V) $y = \ln \left(\frac{x + 1}{\sqrt{x - 2}}\right)$

Example VI, Logarithms and Implicit Differentiation

Use implicit differentiation to find dy/dx if $\ln(xy) = x + y$.

by Joseph Phillip Brennan Jila Niknejad

Example VII, Implicit Differentiation with Multiple Quantities

The area A and radius r of a circle are related by the well-known equation

 $A=\pi r^2.$

Suppose that the radius is changing over time. *What can we say about the rate of change of the area?*

