Section 3.8 Implicit Differentiation

(1) Implicit Functions
(2) Implicit Differentiation
(3) Derivatives of Logarithmic Functions

Implicit Functions and Implicit Differentiation

In every equation that involves y and x, we can regard y as a function of x, except for where the derivative does not exist. Even if we cannot solve for y explicitly, it is still an implicit function of x.
$x^{3}+y^{2}-2 x y=4$

What is the slope of the tangent line at the point $(-2,2)$?

Differentiating a function which is defined implicitly is called implicit differentiation, and is an application of the chain rule.

Idea: Differentiate both sides of the equation, then solve for $y^{\prime}(x)$.

Implicit Differentiation

Example I(a): The circle of radius 5 is defined by the equation $x^{2}+y^{2}=25$.
To find $y^{\prime}(x)$, first differentiate both sides of the equation.

$$
\frac{d}{d x}\left(x^{2}+y(x)^{2}\right)=\frac{d}{d x}(25)
$$

Note that $\frac{d}{d x}\left(y(x)^{2}\right)=2 y(x) y^{\prime}(x)$, so this equation becomes

$$
2 x+2 y(x) y^{\prime}(x)=0
$$

Now abbreviate $y=y(x)$ and $y^{\prime}=y^{\prime}(x)$ and solve for $y^{\prime}(x)$:

$$
2 x+2 y y^{\prime}=0 \quad \therefore \quad 2 y y^{\prime}=-2 x \quad \therefore \quad y^{\prime}=-\frac{x}{y}
$$

Implicit Differentiation

The equation $x^{2}+y^{2}=25$ implicitly defines a function whose derivative with respect to x is

$$
\frac{d y}{d x}=\frac{-x}{y}
$$

Notice that the derivative depends upon more than just an x-value! Both an x and y value must be specified.

Example I(b): What is the slope of the tangent line to the circle at $x=3$?

KUǨANSAS'S

Example II, Implicit Differentiation

By viewing y as an implicit function of x, we are viewing y as some function whose formula, $f(x)$, is unknown, but which we can differentiate.

Implicit differentiation is an application of the chain rule:

$$
\frac{d}{d x}(y)=\frac{d y}{d x} \quad \frac{d}{d x}\left(y^{3}\right)=3 y^{2} \frac{d y}{d x} \quad \frac{d}{d x}\left(e^{y}\right)=e^{y} \frac{d y}{d x}
$$

The product and quotient rules still apply:

$$
\begin{array}{ll}
\frac{d}{d x}(x y)=x \frac{d y}{d x}+y & \frac{d}{d x}\left(x^{2} y^{2}\right)=\left(x^{2}\right)\left(2 y y^{\prime}\right)+(2 x)\left(y^{2}\right) \\
\frac{d}{d x}\left(\frac{x}{y}\right)=\frac{y-x y^{\prime}}{y^{2}} & \frac{d}{d x}\left(\frac{x+1}{y+1}\right)=\frac{(y+1)(1)-(x+1)\left(y^{\prime}\right)}{(y+1)^{2}}
\end{array}
$$

Example III

Example III(a): Find y^{\prime} if $x^{3}+6 x y-y^{2}=0$.

Example III(b): Find the tangent line to the curve $x^{3}+y^{2}-2 x y=4$ at $(-2,2)$.

Example III

Example III(c): For the equation $x^{3}+y^{2}=x y$ find the points for which the tangent line is horizontal or vertical.

Example IV, Comparing $d y / d x$ and $d x / d y$

Differentiate the following equations with respect to each of x and y. Watch what happens!
(I) $9 x^{2}+x y+9 y^{2}=19$
(II) $\sqrt{x+y}=x^{2} y^{2}$
(III) $e^{x y}=e^{4 x}-e^{5 y}$

Derivatives of Logarithmic Functions

Remember that the logarithm function is defined by

$$
y=\log _{b}(x) \quad \Leftrightarrow \quad x=b^{y}
$$

We can calculate the derivative of $y=\log _{b}(x)$ by implicitly differentiating the equation $x=b^{y}$ with respect to x :

$$
\frac{d}{d x}(x)=\frac{d}{d x}\left(b^{y}\right) \Rightarrow 1=b^{y} \ln (b) \frac{d y}{d x} \quad \Rightarrow \quad \frac{d y}{d x}=\frac{1}{b^{y} \ln (b)}=\frac{1}{x \ln (b)}
$$

If $b=e$, then $\log _{b}(x)=\ln (x)$ and $\ln (b)=1$.
Derivatives of Logarithmic Functions

$$
\frac{d}{d x}\left(\log _{b}(x)\right)=\frac{1}{x \ln (b)} \quad \frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

Example V

Derivatives of Logarithmic Functions

$$
\frac{d}{d x}\left(\log _{b}(x)\right)=\frac{1}{x \ln (b)} \quad \frac{d}{d x}(\ln (x))=\frac{1}{x}
$$

(I) $y=\ln \left(\sqrt{x^{2}+1}\right)$
(II) $y=\ln (\ln (2 x))$
(III) $y=\log _{10}(2+\sqrt{x})$
(IV) $y=\ln \left(\frac{x+1}{\sqrt{x-2}}\right)$

Example VI, Logarithms and Implicit Differentiation

Use implicit differentiation to find $d y / d x$ if $\ln (x y)=x+y$.

Example VII, Implicit Differentiation with Multiple Quantities

The area A and radius r of a circle are related by the well-known equation

$$
A=\pi r^{2}
$$

Suppose that the radius is changing over time. What can we say about the rate of change of the area?

